EVALUATION OF ANTI HYPERLIPEDIMIC ACTIVITY OF AMARANTHUS TRICOLOR EXTRACT IN EXPERIMENTAL ANIMAL MODEL

D.Swathi*, Vanga Umendar

Department of Pharmacology, Holy Mary Institute of Technology & Science, Bogaram (V), Keesara (M), R.R.Dist., Hyderabad, Telangana, India.

ABSTRACT: To investigate the anti diabetic and anti Hyperlipidemic activity of methanolextractof Amaranthusin male Wistarrats.Inthismodel of Hyperlipidemia,30 adult malewistarrats(150-200gms)were evenlydivided into 5groups in both groups.Group-1andGroup-2servedas untreated and modelcontrolsrespectively, whileGroup-3, 4and5 werethetreatments groups which were simultaneously treated with standard, 200and400mg/kgextract respectively along with High Fat Diet and Triton x 100. Onlastday, blood samples for biochemical parameters, were obtained under inhaled dietheranaesthesia. HFD and Triton x 100 treatment caused Hyperlipidemiaas evidenced by marked elevationinCholesterol, Triglycerides, LDL, VLDL and decrease in HDL levels. Co-administration of extract with HFD and Triton x 100decreased rise Cholesterol, Triglycerides, LDL, VLDL and increase in HDL levels. It was observed that the methanolextract of Amaranthusconferred Anti-Hyperlipidemia activity by biochemical observation against HFD and Triton-x-100induced Hyperlipidemiainrats. In the near future could constitute aleadto discovery of anoveldrug for treatment of drug induced Hyperlipidemia.

I. INTRODUCTION

Hyperlipidemia is a condition when abnormally high levels of lipids i.e., the fatty substanceare found in theblood. This condition is also called hypercholesterolemia/hyperlipoproteinemia¹. Human body is complex machinery and for maintaining the homeostasis of various organ and organ system. Any undesirable change will disturb the balance resulting in diseased state².Lipids are fats in the blood stream, commonly divided into cholesterol and triglycerides. Cholesterol circulates in the bloodstream and is involved in the structure andfunction of cells.Triglycerides(TG) are best viewed as energy that is either used immediately or stored in fat cells.TG are manufactured in the liver from the foods or by being absorbed from the intestine³.Virchow in 19thcentury who identified cholesterol crystals in atherosclerotic lesion and stated that endothelial cell injury initiates atherogenesis2.In a modification of this hypothesis it was proposed that the endothelium normally influences the behavior of arterial smooth muscle cells by providing a barrier to the passage of plasma proteins, and that the major effect of haemodynamic or other factors that injure endothelium is to reduce the effectiveness of the barrier⁴. Arteries are normally smooth and unobstructed on the inside, but in case of increased lipid level, a sticky substance called plaque is formed inside the walls of arteries. This leads to reduced blood flow, leading to stiffening and narrowing of the arteries. It has been proved that elevated plasma levels of cholesterol and of LDL are responsible for atherosclerosis in man, and epidemiological data suggests that elevated plasma levels of HDL have a protective effect⁵.

I. Plat Material

II. MATERIALS AND METHODS:

The leaves of plant *Amaranthus* was collected from hilly region of Chittoor district, Tirupathi, A.P, India. The plant was authenticated by Dr. K. Madhav Chetty, Asst. Professor, Dept. of Botany, Sri Venkateshwara University, Tirupathi.

II. Drugs And Chemicals

Amaranthus, all other chemicals and diagnostic kits were provided by Sigma Institute of Clinical Research and Administration.

III. Phytochemical Screening

Preliminary phytochemical investigation was carried out on Methanol extract of Amaranthus leaf for detection of

various phytochemicals by standard methods⁹⁰

IV. Determination Of Acute Oral Toxicity

Acute toxicity studies were performed according to OECD-423 guidelines category IV substance (acute toxic class method). Albino rats (n=3) of either sex selected by random sampling technique were employed in this study. The animals were fasted for 4 hrs with free access to water only. The plant extracts of *Amaranthus* were administered orally with maximum dose of 2000 mg/kg body weight. The mortality was observed for three days. If mortality was observed in 2/3 or 3/3 of animals, then the dose administered was considered as a toxic dose. However, if the mortality was observed only one rat out of three animals then the same dose was repeated again to confirm the toxic effect. If mortality was not observed, the procedure was then repeated with higher dose (Organization for economic Co-operation and development, 2001).

V. High Fat Diet Composition⁹⁴

Ta	ible 5.1 :High Fat Diet Compositio	n
Composition	Normaldiet (gm)	High Fatdie (gm)
Protein(Milkpowder)	12	10
Carbohydrates(Wheatflour)	71	61
Sugar	05	05
Fat(Butter)	05	16
Salts	04	04
Vitamins	01	02
Fibers	02	01
Cholesterol		01
TotalWeight	100g	100g

VI. Experimental Animals

Wistar albino adult male rats weighing 200-250g were obtained from the animal house. The animal were grouped and housed in polyacrylic cages (38x 23x 10 cm) with not more than five animals per cage and maintained under standard laboratory under standard laboratory conditions (temperature 25+2oC) with dark and light cycle (14/10 hour). They were allowed free access to standard dry pellet diet (Hindustan Lever, Kolkata, India) and water *ad libitum*. The animals were acclimatized to laboratory condition for 10 days before commencement of experiment. The experimental protocol was approved by Institutional Animal Ethical Committee (IAEC) constituted under CPCSEA.

VII. Induction of Hyperlipidemia by Triton-x-100

Hyperlipidemia was induced in Wistar albino rats by single intraperitoneal injection of freshly prepared solution of Triton-X-100 (100 mg/kg) in physiological saline solution after overnight fasting for 18 h⁹⁵.

The animals were divided into five groups of six rats each.

- I. The first group was given standard pellet diet, water and orally administered with 2% Tween 80.
- II. The second group was given a single dose of triton administered at a dose of 100mg/kg, i.p. After 72 hours of triton injection, this group received a daily dose of 2% Tween 80 (p.o) for 7 days.
- III. The third group was administered a daily dose of Atorvastatin 10 mg/day
- IV. Fourth group Amaranthus200mg/kg suspended in 2% Tween 80, p.o., for 7 days, after inducing hyperlipidemia.
- V. Fifth group was administered with the Amaranthus400 mg/kg, p.o. for 7 days⁹⁶.

VIII. Induction of Hyperlipidemia by High Fat Diet

The animals were divided into five groups. Each group contains six animals.

Grouping is as follows:

Group 1: Normal Group (Tween 80)

Group 2: Control Group (HFD)

Group 3: Standard-Atorvastatin + HFD (10 mg/kg)

Group 4: Extract II- Amaranthus+ HFD (400 mg/kg)

Group 5: Extract I- Amaranthus+ HFD(200 mg/kg)

The study Duration is 14 days

IX. Collection of blood

On the 8thday, blood was collected by retro orbital sinus puncture, under mild ether anaesthesia. The collected samples were centrifuged for 10 minutes. Then serum samples were collected and used for various biochemical experiments. The animals were then sacrificed and the liver collected⁹⁷.

X. Bio Chemical Estimations:

A. Cholesterol⁹⁸⁻¹⁰⁰

Clinical significance

Measurement of serum cholesterol levels are useful in evaluation of the risk of the coronary arterial occlusion, atherosclerosis, myocardial infarction, liver function, biliary function, intestinal absorption, thyroid function and adrenal disease.

Principle

The estimation of cholesterol involves the following enzyme catalyzed reactions.

Cholesterol ester $+ O_2 - CE$ cholesterol + fatty acid Cholesterol ester $+ O_2 - CHOD$ + CHOD + CHOD $+ H_2O_2$ $+ H_2O_2 + 4AAP + phenol - CHOD$ $+ H_2O + Quinoneimine$ CE: cholesterol esterase POD CHOD: Cholesterol oxidase 4AAP: 4 aminoantopyrine Calculation Abs. of test Cholesterol (mg/dl) = concentration of standard (mg/dl)

Abs. of standard

Procedure

Pipette in to test tubes	Blank	Standard	Sample
Working reagent 1	1000 µl	1000 µl	1000µl
Distill water	10µl		
Standard		10 µl	
Sample			10 µl

Mix well after each addition and incubate at 37° C for 10 minutes. Read absorbance of standard and test against reagent blank at 505/670 nm.

Increase

- > Increased levels are found most characteristically, in primary hyperlipoproteinaemias
- In nephrotic syndromes
- Myoxoedema
- Obstructive jaundice

Diabetes mellitus

Decreases

- Low are frequently obtained in anemia
- In hemolytic jaundice
- In malabsorption syndrome
- severe malnutrition
- Acute infections and in terminal state

 \succ Very low values occur in betalipoproteinemia and to a lesser degree in familial hypobetalipoproteinaemias.

B. Triglycerides¹⁰¹

Clinical significance

Triglycerides are a family of lipids absorbed from the diet and produced endogenously from carbohydrates. Measurement of triglyceride is important in the diagnosis and management of hyperlipidemias. These diseases can be genetic or secondary to other disorders including nephrosis, diabetes mellitus and endocrine disturbances. Elevation of triglycerides has been identified as a risk factor for atherosclerotic disease.

Principle

 $\begin{array}{c} \text{Lipase} \\ \text{Triglycerides + H_2O} & \xrightarrow{\text{Lipase}} & \text{Glycerol + Fatty acids} \\ \text{GK} \\ \text{Glycerol + ATP} & \xrightarrow{\text{Glycerol - 3-phosphate + ADP}} \\ \hline \text{GPO} \\ \text{Glycerol-3-Phosphate+O_2} & \xrightarrow{\text{Dihydroxy phosphate + H_2O_2}} \\ \text{H_2O_2 + 4-aminoantipyrine + 3, 5-DHBS} & \xrightarrow{\text{Outinoneimine + 3H_2O}} \\ \text{GK: Glycerokinase} \\ \hline \text{GPO: Glycerol 3 phosphate oxidase} \\ \hline \text{Mg}^2 \\ \hline \end{array}$

DHBS: 3, 5-Dichloro-2-hydroxybenzene sulfonate

Lipase hydrolysis serum triglycerides to glycerol and fatty acids. The liberate glycerol is converted to glycerol-3phosphate in the presence of ATP and glycerokinase. Glycerol-3 phosphate is oxidised by glycerol 3 phosphate oxidase to yield H_2O_2 . H_2O_2 thus generated reacts with 4-aminophenazone and 4-chlorophenol under the catalytic influence of peroxidase to form colouredquinoneimine complex. The intensity of colour so developed is proportional to triglyceride concentration and is measured at 505 nm.

Procedure

Pipette in to test tubes	Blank	Standard	Sample
Working reagent 1	1000 µl	1000 µl	1000µl
Distill water	10µ1		
Standard		10 µl	
Sample			10 µl

Mix and incubate for 10 minutes at 37° C. Read absorbance of standard and test against reagent blank at 505 (500-540 nm). **Calculation**

Triglycerides $(mg/dl) = \frac{Abs. of test}{Abs. of standard}$ concentration of standard (mg/dl)

A. HDL-Cholesterol¹⁰²

Clinical significance

High density lipoprotein (HDL) contains particles of different density including lipid and highest concentration of proteins amongst the different lipoproteins. Includes free and esterified cholesterol, triglycerides, phospholipids and apoproteins A, C and E. HDL cholesterol values are about 1/5th of the total cholesterol values and can be expressed as percentage of total cholesterol.

Decreases

There exists an inverse relationship between HDL cholesterol and coronary heart diseases. Low concentration i.e.

below 30 mg/dl is one of the risk factors for cardiac ailments.

Principle

Chylomicrons, LDL and VLDL (low and very low density lipoproteins) are precipitated from serum phophotungstate in the presence of divalent cat ions such as magnesium. The HDL cholesterol remains unaffected in the supernatant and is estimated using Robonik cholesterol reagent.

Phophotungstate

Serum/plasma= HDL + (LDL + VLDL + chylomicrons)Mg2+ (Supernatant)

(Precipitate)

Procedure:

Pipette in to test tubes	Blank	Standard	Sample
Working reagent 1	1000 µl	1000 µl	1000µl
Distill water	10µl		
Standard		10 µl	
Sample			10 µl

Mix well and allow the reaction mixture to stand for 10 min at R.T. centrifuge at 4000 rmp for 10 min to obtain clear supernatant. Use the supernatant to obtain the concentration of HDL cholesterol in the sample. Calculation

Abs. of test HDL (mg/dl) =x Concen of standard (mg/dl)x Dilution factor Abs. of standard

B. SGOT/AST¹⁰³⁻¹⁰⁴

Principle

Kinetic determination of the aspartate aminotransferase (GOT) activity :

GOT L - Aspartate + α –Ketoglutarate Θ aloacetate + L-Glutamate MDH Oxaloacetate + NADH + H-L-Malate + NAD

ASSAY PROCEDURE 1: Two Reagent procedures

Pipette in to test tubes	Sample/Control
R1	800µ1
R2	200 µl

Mix and Incubate at 37°C for 2 minutes then add

Pipette in to test tubes	Sample/Control	
Working reagent	1000µl	
Sample/Control	100 µl	

Mix and after a 60 seconds incubation at 37°C measure the change of absorbance per minute (ΔA /minute) during 180 seconds.

Calculation:

Activity of Sample (U/L) = Δ A/Min X1746

C. SGPT/ ALT¹⁰⁵⁻¹⁰⁸

Principle

Kinetic determination of the GPT activity GPT

L - Alanine + α –Ketoglutarate

LDHPyruvate + NADH + H⁺ L-Inactate + NAD⁺

ASSAY PROCEDURE 1: Two Reagent procedures

	Pipette in to test tubes	Sample/Control
R1 800µl	R1	800µ1
R2 200 μl	R2	200 µl

Mix and Incubate at 37°C for 2 minutes then add

Table : 10 Kinetic determination of the GPT activity

Pipette in to test tubes	Sample/Control	
Working reagent	1000µ1	
Sample/Control	100 µl	

Mix and after a 60 seconds incubation at 37°C measure the change of absorbance per minute (ΔA /minute) during 180 seconds. **Calculation:**

Activity of Sample (U/L) = Δ A/Min X 1746

C. ALKALINE PHOSPHATASE¹⁰⁷

p-Nitrophenyl phosphate is converted to p-nitrophenol and phosphate by alkaline phosphatase. The rate of formation of p-Nitrophenol is measured as an increase in absorbancewhich is proportional to the ALP activity in the sample.

p-Nitrophenyl phosphate ALP

Assay procedure 1: Two Reagent procedures

Pipette in to test tubes	Sample/Control
R1	800µ1
R2	200 µl

A. Mix and Incubate at 37°C for 2 minutes then add

Pipette in to test tubes	Sample/Control
Working reagent	1000µl

	100 1
Sample/Control	100 µl

Mix and after a 60 seconds incubation at 37°C measure the change of absorbance per minute (ΔA /minute) during 180 seconds.

Calculation:

At 405 nm with mono reagent procedure and two reagent procedure for 1 cm path light cuvette Activity of Sample (U/L) = (Δ A/Min) X 2712

A. Estimation of Serum Total Proteins: ¹⁰⁸⁻¹⁰⁹

Principle: The peptide bond of proteins reacts with CU+2 ions in alkaline solution to from a blue violet complex (Biuret reaction), each copper ion complexing with 5 or 6 peptide bonds. Tartarate is added as stabilizer while iodine is used to prevent auto reduction of alkaline copper complex. The colour formed is proportional to the protein concentration and is measured at 546 nm.

Procedure:

Reagents	Blank(µl)	Standard(µl)	Sample(µl)
Working reagent Distilled water Standard	1000 20	1000 20	1000
Sample			20

Incubate for 10 min. at 37 ^c Read absorbance of standard and each sample at 546 nm

against reagent blank.

B. Glucose¹¹⁰

Glucose estimation by Trinder"s method

Clinical significance

Accurate measurement of glucose in body fluids is important in the diagnosis and management of diabetes, hypoglycaemia, adrenal dysfunction and various other conditions.

Principle

Glucose in sample is oxidized to yield gluconic acid and hydrogen peroxide in the presence of glucose oxidase. The enzyme peroxidase catalyses the oxidative coupling of 4aminoantipyrine with phenol to yield a coloured quioneimine complex, with absorbance proportional to the concentration of glucose in sample.

Glucose $+O^2+H_2O$ $H_2O_2+Phenol+4AAP$ Gluconic acid $+H_2O_2$ Quinoneimine dye $+2H_2O$

Procedure

Pipette in to test tubes	Blank	Standard	Sample
Working reagent 1	1000 µl	1000 µl	1000µl
Distill water	10µl		
Standard		10 µl	
Sample			10 µl

Increases

Diabetes mellitus

In patients receiving glucose containing fluids intravenously, during severe stress and cerebrovascular

accidents.

Decreases

- > On insulin administration, as a result of insulinoma
- > In born errors of carbohydrate metabolism or on fasting.
- **XI. STATISTICAL ANALYSIS:** All data were expressed as the mean \pm SEM. For statistical analysis of the data, group means were compared by one-way analysis of variance (ANOVA) followed by Dunnett's test, P<0.05 was considered significant.

III. RESULTS AND DISCUSSIONS

	Table 6.1: Listofinstrumentsused				
Sr.No.	NameofInstrument	Description			
1.	Autoanalyser	ARTOS, The versatile Autoanalyser, SlNo- SBPL/ 188/06-07			
2.	Incubator	REMI Cooling Centrifuge. C-24 BL.			
3.	Digital Balance	ACCULAB – Sartorious group.			
4.	Flash Evaporator	SUPERFIT, Rotary "VaccumDigital Bath", PMTc – 3040			
5.	Deep Freezer	BLUE STAR, Model No CHE400, SrNo 67771			
6.	Homogenizer	REMIHomogenizerMumbai. Type – RQ 127A			

Table 6.1: ListofInstrumentsused

Table 6.2: ListofChemicalsused

Sr.No	NameofChemical	Description
1.	Gentamicin	Gifted by MicrolabsPvt. Ltd. Bangalore
2.	Heparin	(HEP-5)Gland Pharma Ltd, Hyderabad.Batch – No. UJ918
3.	Chloroform	S.D. Fine – ChemLtd. Mumbai.
4.	KC1	S.D. Fine– ChemLtd. Mumbai. Batch-No: - 200Z-0200-1612-09. Mole. Wt:- 74.55
5.	Formalin	FischerScientific. LotNo:- 91026906-5., PdtNo.24005
6.	NaCl	LeoChem, Bangalore. Mole.Wt:- 58.44, Lot No. 126012
7.	EDTA	S.D.Fine ChemLtd. PdtNo:- LO4/10204/2611/13
8.	KH2PO4	QualigensfineChemicals, Mumbai. LotNo:- 18986711-
9.	K2HPO4	Leochem, Bangalore. Lot No- 125176, P-2V829.
10.	H2O2(30%w/v)	SDFCL-38694L05,BatchNo- G09A/2209/0807/13

11.	Methanol	SDFCL. Mole Wt:- 32.04, B.P. 64-65.5 °C, Batch No:-K08A/1308/1211/13
12.	Trichloroacetic acid	Nice Chemicals, Bombay.
13.	Thiobarbituric acid (TBA)	Loba Chemicals, Mumbai.
14.	Sodiumazide	S.D. Fine ChemLtd.
15.	Reduced glutathione	Sigma U.S.A.
19.	UreaKit	Coral Clinical Systems, Verna Goa, India.
20.	Uric acid Kit	Coral Clinical Systems, Verna Goa, India.
21.	Creatinine Kit	Coral Clinical Systems, Verna Goa, India.

Table 6.3:. Preliminary phytochemical screening of Amaranthus extract:

SLNO.	TEST	RESULT
	ALKALOIDAL TEST	
	a Dragondroffs test	Positive
1.	h Mayer's test	Positive
	c. Wagner's test	Positive
	d. Hager's test	Positive
	CARBOHVDRATES TEST	
	a Molish's test	Positive
2	h Fehling's test	Positive
2.	c Benedict's test	Positive
	d Baeford's test	Positive
	STEROIDS TEST	i ositive
3	a LibermannBuchard test	Positive
5.	b. Salwoski test	Positive
	GLYCOSIDES TEST	
	a.Legal test	Positive
4.	b.Baljet test	Positive
	c.Killerkilaini test	Positive
	d. Borntagers test	Positive
5	SAPONINS TEST	
5.	a.Foam test	Positive
C.	FLAVONOIDS TEST	
0.	a.Shinoda test	Positive
7.	TRITERPINOIDAL TEST	Negative
	PHENOLICS & TANNINS	
	TEST	
8.	a.Ferric chloride test	Negative
	b.Gelatin test	Negative
	c.Lead acetate test	Negative
	PROTIEN& AMINOACIDS	
	TEST	Positive
9.	a.Buret's test	Positive
	b.Ninhydrin test	Positive
	c.Xanthoprotic test	2 001010
10.	FIXED OIL TEST	
	a.Spot test	Positive
11.	RESIN TEST	
***	a.Acetic anhydride test	Positive

Table no 6.4: Percentage yield of crude extract of Amaranthus

Sl.No.	Solvent	Color and Consistency	
			Percentage yield
1	Ethanol	Dark brown sticky	10.2%

I. Evaluation of Anti Hyperlipidemic activity of Amaranthus In Rats

Mean And S.E.M Of Parameters Of The Animals

Table 6.5:TRITON-X-100 INDUCED MODEL:

Triton x-100					
TEST	NORMAL	CONTROL	STANDARD	T1	T2
ALP	74.59±3.107	162.51±1.34***	125.78±1.52***	126.23±0.92***	78.2±1.423
GPT	35.26±1.275	65.80±1.413***	41.11±3.826	40.79±1.385***	35.71±1.671**
GOT	41.50±3.226	53.70±3.894*	41.68±2.426	42.35±2.310	46.32±2.075
ТР	40.31±3.128	32.71±1.751***	19.56±2.321***	16.26±2.315***	22.89±1.483***
HDL	53.48±3.652***	23.82±1.516	41.69±3.971**	51.25±2.153	56.85±2.351
TG	51.12±2.128	81.76±1.621***	79.23±1.619***	81.2±2.210***	61.42±3.126***
ТС	66.35 ± 2.328	151.01±2.121***	68.05±1.451	98.52±1.612***	92.21±1.811***
VLDL	10.01±0.233	15.59±0.627***	13.85±0.352***	15.45±0.356***	13.30±1.464***
LDL	11.56 ± 2.692	101.63±5.069***	10.63±3.114	33.83±4.159	21.98±2.700
AI	0.41±0.239	3.29±0.358	0.42±0.189	0.96±0.328	0.51±0.496
CRR	3.12±0.521	7.63±0.491	2.68±0.122	2.23±0.214	2.16±0.161

Table 6.6 Body Weight

TRITON X100	NORMAL	CONTROL	STANDARD	T1	T2
Before	173.0±0.96	172.66±0.89	174.0±1.12	173.33±0.88	172.0±0.85
treatment					
After	183.5±0.76	243.0±0.96***	194.33±0.66***	224.33±0.88***	244.83±1.14***
treatment					

N = 6; Significance:*** *P*<0.001, ** *P*<0.01, * *P*<0.05 from control

I. HFD DIET INDUCED MODEL

Table no 6.7: Biochemical Parameters of the Animals

HFD diet	NORMAL	CONTROL	STANDARD	T1	T2
B.wB.T	231.28±0.1	213±1.06	218.59±2	238.7±0.43	231.12±0.61
B.wA.T	25.4±0.15	342.61±2.4***	251.29±0.5***	221.43±2.71***	269±2.75***
HDL	26.12±0.23	21.5±0.83**	33.19±0.54**	32.23±0.47**	36.87±0.10***
LDL	25.19±0.56	56.40±0.10***	35.85±0.26***	41.17±1.43***	26.28±1.69
VLDL	13.10±2.63	20.72±0.58***	14.38±0.59***	13.76±0.48	14.22±0.52
GLUCOSE	72.43±0.81	151.2±0.60***	107.1±0.75***	124.1±0.47***	108.1±0.70***
TC	64.02±0.51	102.0±0.19***	86.1±0.60***	81.25±2.55***	65.43±0.39
TG	52.05±1.15	92.01±0.24***	60.94±2.11***	71.55±2.46***	52.89±0.75

AI	1.41±0.574	3.67±0.529***	1.66±0.619	1.69±0.46	0.77±0.98***
CRR	2.21±0.218	3.57±0.529***	2.98±0.328	2.31±0.85	1.75±0.89***

TRITON-X-100 INDUCED HYPERLIDAEMIA MODEL:

IV. CONCLUSION

Phytochemical screening of the extract shows the presence of chemical constituents like Alkaloids, steroids, fixed oils, cardio tonic aglycones, flavonoids ,saponins ,carbohydrates, proteins, resins. Acute toxicity tests were performed according to the OECD guide line no.423, LD50 value was found to be 200mg/kg and 400mg/kg.

Anti Hyperlipidaemic activity was performed by using the high fat diet and Triton-x-100 induced method. In the present study an increase in plasma HDL-cholesterol with a concomitant percentage decrease from other lipid was observed. It can be concluded from the present data that the levels of total serum cholesterol, triglyceride and MDA which are actually raised in high fat diet, can be lowered significantly with *Amaranthus* And total proteinswhich is actually lowered in Triton-x-100 can be raised significantly with *Amaranthus*. Atherogenic index which actually raised in atherogenic diet and Triton-x-100, can be lowered significantly with *Amaranthus* and a very good % protection was seen with *Amaranthus* and standard drug.

The extract also show increase in the glucose tolerance of the rats and decrease in the fasting blood glucose level of diabetic rats, showing the hypoglycaemic activity of the plant which is most pronounced in methanol extract.

In nutshell the extract of *Amaranthus* possesses significant hypoglycaemic activity and anti Hyperlipidaemic activity, which is the first claim in this respect.

REFERENCES

[1] Amit G, Vandana S, Sidharth M. HYPERLIPIDEMIA: An Updated Review. Inter J of Biopharma &Toxicol Res 2011;1:81-89.

- [2] Virchow RP, Thrombose IG. In GesammelteAbhandlungenzurWissenschaftlichenMedicin. Frankfurt-am-Main, Meidinger Sohn & Company 1856, S 458-564.
- [3] Ankur rohilla, Nidhi Dagar, Seema Rohilla, Amarjeet Dahiya, Ashok Kushnoor. HYPERLIPIDEMIA- a deadly pathological condition. Inter J Curr Pharma Res 2012;4:15-18
- [4] Ross R, Glomset JA. The pathogenesis of atherosclerosis. N Engl J Med 1976;295:369-77.
- [5] Grundy SM, Vega GL. Hypertriglyceridemia: causes and relation to coronary heart disease Semin. Thromb. Hemost1988;14:249-64.
- [6] Dargel R. Lipoproteins and the etiopathogenesis of atherosclerosis. ZentralblAllgPathol 1989; 135: 501-504.
- [7] Kritchevsky D. Cholesterol vehicle in experimental atherosclerosis. A brief review with special reference to peanut oil. Arch Pathol Lab Med 1988; 112:1041 -4.
- [8] Ahmed SM, Clasen MD, Donnelly. MD: Management of dyslipidemia in adults. Amer, Family Physician 1998;57:1-16.
- [9] Fryar CD, Hirsch R, Eberhardt MS, Yoon SS, Wright JD. Hypertension, high serum total cholesterol, and diabetes: racial and ethnic prevalence differences in U.S. adults, 1999-2006. NCHS Data Brief 2010; 36: 1-8.
- [10] Ginsberg HN, Goldberg IJ. Disorders of lipoprotein metabolism. In: Harrison'sPrinciples of Internal Medicine. 15th Ed. New York: McGraw Hill;2001. 2245-2256.